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A lattice Boltzmann model is presented for axisymmetric multiphase flows. Source terms are added to a
two-dimensional standard lattice Boltzmann equation for multiphase flows such that the emergent dynamics
can be transformed into the axisymmetric cylindrical coordinate system. The source terms are temporally and
spatially dependent and represent the axisymmetric contribution of the order parameter of fluid phases and
inertial, viscous, and surface tension forces. A model which is effectively explicit and second order is obtained.
This is achieved by taking into account the discrete lattice effects in the Chapman-Enskog multiscale analysis,
so that the macroscopic axisymmetric mass and momentum equations for multiphase flows are recovered
self-consistently. The model is extended to incorporate reduced compressibility effects. Axisymmetric equilib-
rium drop formation and oscillations, breakup and formation of satellite droplets from viscous liquid cylindri-
cal jets through Rayleigh capillary instability, and drop collisions are presented. Comparisons of the computed
results with available data show satisfactory agreement.
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I. INTRODUCTION

Fluid flow with interfaces and free surfaces is common in
nature and in many engineering applications. Such interfacial
flows which typically involve multiple scales remain a for-
midable nonlinear problem rich in physics and continue to
pose challenges to experimentalists and theoreticians alike
f1g. Numerical simulation of multiphase flows is challenging
as the shape and location of the interfaces must be computed
in conjunction with the solution of the flow fieldf2,3g. Com-
putational methods based on the lattice Boltzmann equation
sLBEd for simulating complex emergent physical phenomena
have attracted much attention in recent yearsf4,5g. The LBE
simulates multiphase flows by incorporating interfacial phys-
ics at scales smaller than macroscopic scales. Phase segrega-
tion and interfacial fluid dynamics can be simulated by in-
corporating interparticle potentialsf6,7g, concepts based on
free energyf8,9g, or kinetic theory of dense fluidsf10–12g.

The formulation of the standard LBE is based on the Car-
tesian coordinate system and does not take into account axial
symmetry, which may exist. Numerous multiphase flow situ-
ations exist where the fluid dynamics can be approximated as
axisymmetricf1,13g. Examples include head-on collision of
drops, normal drop impingement on solid surfaces, and Ray-
leigh instability of cylindrical liquid columns. Currently, full
three-dimensionals3Dd calculations have to be carried out
for problems which may be approximated as axisymmetric
f14–16g. In 3D computations, computational considerations
restrict the numerical resolution that may be employed and
the physics may not be well resolved. For example, in the
breakup of drops into satellite droplets the size of the drop-
lets may be such that the 3D grids may not resolve them. To
improve the computational efficiency of the LBE for axisym-
metric multiphase flows, we propose an axisymmetric LB

model in this paper. The approach consists of adding source
terms to the 2D Cartesian LBE model based on the kinetic
theory of dense fluids for multiphase flowsf10,11g. This ap-
proach is similar in spirit to the idea proposed inf17g to
solve single-phase axisymmetric flows. However, multiphase
flow problems involve additional complexity as a result of
interfacial physics involved—i.e., the surface tension forces
and the need to track the interfaces. In this case, the accuracy
of the numerical discretization of the source terms represent-
ing interfacial physics also becomes an important consider-
ation.

This paper is organized as follows. In Sec. II, the axisym-
metric LBE multiphase model is described. Then, in Sec. III,
its extension to simulate axisymmetric multiphase flows with
reduced compressibility effects is described. The computa-
tional methodology adopted is also discussed in this section.
In Sec. IV, the axisymmetric model is applied to benchmark
problems to evaluate its accuracy. Finally, the paper closes
with a summary in Sec. V.

II. AXISYMMETRIC LBE MULTIPHASE FLOW MODEL

To simulate axisymmetric multiphase flows, axisymmetric
contributions of the order parameter and inertial, viscous,
and surface tension forces may be introduced to the standard
2D LBE. The source terms, which will be shown to be spa-
tially and temporally dependent, are determined by perform-
ing a Chapman-Enskog multiscale analysis in such a way
that the macroscopic mass and momentum equations for
multiphase flows are recovered self-consistently. The intro-
duction of source terms makes it necessary to calculate ad-
ditional spatial gradients when compared to those in the stan-
dard LBE. While this approach is developed for a specific
LBE multiphase flow model based on kinetic theory of dense
fluids f10,11g, it can be readily extended to other LBE mul-
tiphase flow models.

The governing continuum equations of isothermal multi-
phase flowf18,19g in the cylindrical coordinate system when
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the axisymmetric assumption is employed are

]tr +
1

r
]rsrrurd + ]zsruzd = 0, s1d

rs]tur + ur]rur + uz]zurd = − ]rP + Fs,r + Fext,r +
1

r
]rsrPrrd

+ ]zsPrzd, s2d

rs]tuz + ur]ruz + uz]zuzd = − ]zP + Fs,z + Fext,z +
1

r
]rsrPzrd

+ ]zsPzzd, s3d

wherer is the density andur anduz are the radial and axial
components of velocity. These equations are derived from
kinetic theory, which incorporates intermolecular interactions
forces which are modeled as a function of density following
the work of van der Waalsf20g. The exclusion volume effect
of Enskogf21g is also incorporated to account for an increase
in collision probability due to the increase in the density of
nonideal fluids. These features naturally give rise to surface
tension and phase segregation effects. The other variables
which appear in the above equations will now be described.
Prr , Prz, and Pzz are the components of the viscous stress
tensor and are given by

Prr = 2m]rur , s4d

Prz = Pzr = ms]zur + ]ruzd, s5d

Pzz= 2m]zuz, s6d

wherem is the dynamic viscosity.Fs,r andFs,z are the axial
and radial components, respectively, of the surface tension
force, which are given byf19g

Fs,r = kr]rF1

r
]rsr]rrd + ]zs]zrdG , s7d

Fs,z = kr]zF1

r
]rsr]rrd + ]zs]zrdG , s8d

where k controls the strength of the surface tension force.
This parameter is related to the surface tension of the fluid,
s, through the density gradient across the interface by the
equationf22g

s = kE S ]r

]n
D2

dn. s9d

Thus, the surface tension is a function of both the parameter
k and the density profile across the interface. The termsFext,r
andFext,z in Eqs.s2d ands3d, respectively, are the radial and
axial components of external forces such as gravity.

The pressureP is related to density through the
Carnahan–Starling–van der Waals equation of statesEOSd
f23g

P = rRTH1 + g + g2 − g3

s1 − gd3 J − ar2, s10d

whereg=br /4. The parametera is related to the intermo-
lecular pairwise potential andb to the effective diameter of
the molecule,d, and the mass of a single molecule,m, by
b=2pd3/3m. R is a gas constant andT is the temperature.
The Carnahan-Starling EOS has asupernodal P−1/r−T
curve—i.e.,dP/dr,0—for a certain range of values ofr,
when the state fluid temperature is below its critical value.
This unstable part of the curve is the driving mechanism
responsible for keeping the phases of fluids segregated and
for maintaining a self-generated sharp interface.

We now modify the standard LBE in such a way that it
effectively yields the axisymmetric multiphase flow equa-
tions s1d–s10d in a self-consistent way. To facilitate this, we
employ the following coordinate transformation, illustrated
in Fig. 1, which allows the governing equations to be repre-
sented in a Cartesian-like coordinate system—i.e.,sx,yd:

sr,zd → sy,xd, s11d

sur,uzd → suy,uxd. s12d

Assuming a summation convention for repeated subscript in-
dices, Eqs.s1d–s8d may be transformed to

]tr + ]ksrukd = −
ruy

y
, s13d

rs]tui + uk]kuid = − ]iP + Fs,i + Fext,i + ]kfms]kui + ]iukdg

+ Fax,i , s14d

where

Fs,i = kr]i¹
2r s15d

and i , j ,kP hx,yj. The right-hand sidesRHSd in Eq. s13d,
−ruy/y, is the additional term in the continuity equation that
arises from axisymmetry. The corresponding term for the
momentum equations14d is

Fax,i =
m

y
f]yui + ]iuyg + kr]iS1

y
]yrD . s16d

To recover Eqs.s13d and s14d, we introduce two addi-
tional source termsSa8 and Sa9 to the standard 2D Cartesian
LBE which hasVa as its collision term and a source term for

FIG. 1. Schematic of the arrangement of the coordinate system
in axisymmetric multiphase flowfsr ,zd andsy,xd coordinate direc-
tions are showng.
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the internal and external forces,Sa. These unknown addi-
tional terms, representing the axisymmetric mass and mo-
mentum contributions, respectively, are to be determined so
that the macroscopic behavior of the proposed LBE corre-
sponds to axisymmetric multiphase flow. Thus, we propose
the LBE

fasx + eadt,t + dtd − fasx,td =
1

2
fuVausx,td + uVausx+eadt,t+dtd

g

+
1

2
fuSausx,td + uSausx+eadt,t+dtd

gdt

+
1

2
fuSa8 usx,td + uSa8 usx+eadt,t+dtd

gdt

+
1

2
fuSa9 usx,td + uSa9 usx+eadt,t+dtd

gdt,

s17d

where fa is the discrete single-particle distribution function,
corresponding to the particle velocityea, wherea is the ve-
locity direction. The Cartesian component of the particle ve-
locity, c, is given byc=dx/dt, wheredx is the lattice spacing
anddt is the time step corresponding to the two-dimensional,
nine-velocity modelsD2Q9d f24g shown in Fig. 1. Here, the
collision term is given by the Bhatnagar-Gross-KrooksBGKd
approximationf25g

Va = −
fa − fa

eq

t
, t =

l

dt
, s18d

wherel is the relaxation time due to collisions,dt is the time
step, andfa

eq is the truncated discrete form of the Maxwell-
ian,

fa
eq; fa

eq,Msr,ud = vaH1 +
ea ·u

RT
+

sea ·ud2

2sRTd2 −
1

2

u ·u

RT
J ,

s19d

whereR is the gas constant,T is the temperature, andwa is
the weighting coefficients in the Gauss-Hermite quadrature
to represent the kinetic moment integrals of the distribution
functions exactlyf26g. For isothermal flows, the factorRT is
related to the particle speedc asRT=1/3c2. The term in Eq.
s17d,

Sa =
sea j − ujdsFj + Fext,jd

rRT
fa
eq,Msr,ud, s20d

represents the effect of internal and external forcing terms on
the change in the distribution function. The internal force
term gives rise to surface tension and phase segregation ef-
fects which are given by

Fj = − ] jc + Fs,j , s21d

where the functionc=P−rRT is the nonideal part of the
equation of state, Eq.s10d. The first two terms on the RHS of
Eq. s17d corresponds to those presented by Heet al. f27g. As
mentioned above, the last two termsSa8 andSa9 in this equa-
tion are to be selected such that their behavior in the con-
tinuum limit would simulate the influence of the non-

Cartesian-like terms in Eqs.s13d and s14d in a self-
consistent way. Since the zeroth kinetic moment of the term
fa
eq,Msr ,0d is involved in the derivation of the macroscopic

mass conservation equation from the LBE, the source term
Sa8 in Eq. s17d is proposed to be equal tofa

eq,Msr ,0d multi-
plied by an unknownm8 and normalized by the densityr.
The other source termSa9 is proposed analogous to the source
term in Eq.s20d. Thus, we propose

Sa8 =
fa
eq,Msr,0d

r
m8, s22d

Sa9 =
sea j − ujdFj9

rRT
fa
eq,Msr,ud. s23d

Here the unknownsm8 and Fj9 in the above two equations
can be determined through Chapman-Enskog analysis as will
be shown later. It must be stressed that all terms, including
the collision term, on the RHS are discretized by the appli-
cation of the trapezoidal rule, since it has been argued that at
least a second-order treatment of the source terms is neces-
sary for simulation of multiphase flowf10,11g. The macro-
scopic fields are given by

r = o
a

fa, s24d

rui = o
a

faeai . s25d

In this model, the order parameter is the densityr, which
distinguishes the different phases in the flow.

Equations17d is implicit in time. To remove implicitness
in this equation we introduce a transformation following the
procedure described by Heet al. f10,27g, whereby

f̄a = fa −
1

2
Va −

1

2
sSa + Sa8 + Sa9ddt s26d

in Eq. s17d, so that we obtain

f̄asx + eadt,t + dtd − f̄asx,td

= V̄ausx,td +
t

t + 1/2
fSa + Sa8 + Sa9gusx,tddt, s27d

where

V̄a = −
f̄a − fa

eq

t + 1/2
. s28d

Thus, f̄a is the transformed distribution function that re-
moves implicitness in the proposed LBE, Eq.s17d, which
describes the evolution of thefa distribution function. The
following constraints on the equilibrium distribution and the
various source termsf28,29g are imposed from their defini-
tion:
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o
a

fa
eq= r, o

a

fa
eqeai = rui, o

a

fa
eqeaiea j = rRTdi j + ruiuj ,

o
a

fa
eqeaiea jeak = rsRTd2suid jk + ujdki + ukdi jd, s29d

o
a

Sa = 0, o
a

Saeai = Fi ,

o
a

Saeaiea j = sFi + Fext,iduj + sFj + Fext,jdui , s30d

o
a

Sa8 = m8, o
a

Sa8eai = 0, o
a

Sa8eaiea j = m8RTdi j ,

s31d

o
a

Sa9 = 0, o
a

Sa9eai = Fi9, o
a

Sa9eaiea j = sFi9uj + Fj9uid.

s32d

Then the following relationships are obtained between the
transformed distribution function and the macroscopic fields,
which also include the curvature effects resulting from axial
symmetry:

r = o
a

f̄a +
1

2
m8dt, s33d

rui = o
a

f̄aeai +
1

2
sFi + Fext,i + Fi9ddt. s34d

Now, to establish the unknownsm8 and Fj9 in the above
formulation, the Chapman-Enskog multiscale analysis is per-
formed f21g. Introducing the expansionsf30g

f̄asx + eadt,t + dtd = o
a=0

`

Dtn
f̄asx,td, s35d

Dtn
; ]tn

+ eak]k, s36d

fa = o
a=0

`

enfa
snd, s37d

]t = o
a=0

`

en]tn
, s38d

wheree=dt in Eq. s27d, and using Eq.s26d to transformf̄a

back to fa, the following equations are obtained in the con-
secutive order of the parametere:

Ose0d:fa
s0d = fa

eq, s39d

Ose1d:Dt0
fa

s0d = −
1

t
fa

s1d + Sa + Sa8 + Sa9 , s40d

Ose2d:]t1
fa

s0d + Dt0
fa

s1d = −
1

t
fa

s2d. s41d

Now, invoking the Chapman-Enskog ansatz

o
a
S 1

eai
D fa

s0d = S r

rui
D, o

a
S 1

eai
D fa

snd = S0

0
D, n ù 1,

s42d

and performingoas·d on Eqs.s40d and s41d, we obtain

]t0
r + ]ksrukd = m8, s43d

]t1
r = 0, s44d

respectively. Combining the first- and second-order results
given by Eqs.s43d ands44d and considering]t=]t0

+e]t1
, we

get

]tr + ]ksrukd = m8. s45d

Comparing this equation and Eq.s13d, the unknownm8 is
obtained as

m8 = −
ruy

y
. s46d

This is the axisymmetric contribution to the Cartesian form
of the equation for the order parameter—i.e., the density
characterizing the different phases of the flow. Taking the
first kinetic moment,oaeais·d, of Eqs.s40d ands41d, respec-
tively, we get

]t0
sruid + ]ksruiukd = − ]isrRTd + Fi + Fext,i + Fi9, s47d

]t1
sruid + ]kPi j

s1d = 0, s48d

where

Pi j
s1d = o

a

fa
s1deaiea j . s49d

Employing the expression forfa
s1d from Eq. s40d in Eq. s49d,

together with the summational constraints given above, and
neglecting terms of the orderOsMa3d or higher, we get

Pi j
s1d = − tRTrs] jui + ]iujd. s50d

Equations48d then simplifies to

]t1
sruid = ] jftRTrs] jui + ]iujdg. s51d

Combining Eqs.s47d and s51d, we get

]tsruid + ]ksruiukd = − ]isrRTd + Fi + Fext,i + Fi9

+ ] jftdtRTrs] jui + ]iujdg, s52d

or substituting forFi from Eq. s21d, we obtain

]tsruid + ]ksruiukd = − ]iP + Fs,i + Fext,i + Fi9

+ ] jftdtRTrs] jui + ]iujdg. s53d

Using Eqs.s45d and s53d, this can be simplified to
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rs]tui + uk]kuid −
ruiuy

y
= − ]iP + Fs,i + Fext,i + Fi9

+ ] jftdtRTrs] jui + ]iujdg.

s54d

Comparing Eqs.s14d ands54d, we obtain the other unknown
Fi9 where

Fi9 = Fax,i −
ruiuy

y
=

m

y
f]yui + ]iuyg + kr]iS1

y
]yrD −

ruiuy

y
.

s55d

This is the axisymmetric contribution to the Cartesian form
of the equation for the momentum, where the first, second,
and third terms on the RHS correspond to the viscous, sur-
face tension, and inertial force contributions, respectively.
The dynamic viscosity is related to the relaxation time for
collisions bym=rtdtRT=rlcs

2, wherecs
2=1/3c2. The set of

equations corresponding to the axisymmetric LBE multi-
phase flow model is given by Eqs.s27d and s28d together
with Eqs.s20d, s22d, s23d, s33d, s34d, s46d, ands55d. In gen-
eral, this multiphase model and that proposed by Heet al.
f10g face difficulties for fluids far from the critical point
and/or in the presence of external forces. This difficulty is
related to the calculation of the intermolecular force in Eq.
s21d, involving the computation of] jc which can become
quite large across interfaces. Unless this term is accurately
computed, the model may become unstable because of nu-
merical errorsf14,31g. Hence, an improved treatment of this
term is necessary. This will now be described.

III. AXISYMMETRIC LBE MULTIPHASE FLOW MODEL
WITH REDUCED COMPRESSIBILITY EFFECTS

He and co-workersf11g have proposed that through a suit-
able transformation of the distribution functionfa, which
involves invoking the incompressibility condition of the
fluid, and employing a new distribution function for captur-
ing the interface, the difficulty with handling the intermo-
lecular force term] jc can be reduced. We apply this idea to
the axisymmetric model developed in the previous section.
We replace the distribution functionfa by another distribu-
tion functionga through the transformationf11g

ga = faRT+ csrd
fa
eq,Msr,0d

r
. s56d

The effect of this transformation will be discussed in greater
detail below. By considering the fluid to be incompressible,
i.e.,

d

dt
csrd = s]t + uk]kdcsrd = 0, s57d

and using the transformation, Eqs.s56d ands26d, Eq. s27d is
replaced by

ḡasx + eadt,t + dtd − ḡasx,td

= V̄gausx,td +
t

t + 1/2
fSga + Sga8 + Sga9 gusx,tddt, s58d

where

V̄ga = −
ḡa − ga

eq

t + 1/2
s59d

and

ga
eq= fa

eqRT+ csrd
fa
eq,Msr,0d

r
. s60d

The corresponding source terms become

Sga = sea j − ujdFsFj + Fext,jd
fa
eq,Msr,ud

r

− S fa
eq,Msr,ud

r
−

fa
eq,Msr,0d

r
D] jcsrdG , s61d

Sga8 = Sa8RT=
fa
eq,Msr,0d

r
S−

ruy

y
DRT, s62d

Sga9 = Sa9RT= sej − ujdFj9
fa
eq,Msr,ud

r
. s63d

The term ] jc in Eq. s61d is multiplied by the factor
ffa

eq,Msr ,ud /r− fa
eq,Msr ,0d /rg. This factor, from the definition

of the equilibrium distribution functionfa
eq in Eq. s19d, is

proportional to the Mach number and thus becomes smaller
in the incompressible limit. Hence, it alleviates the difficul-
ties associated with the calculation of the] jc, a major source
of numerical instability with the original modelf10g. Thus,
Eqs.s58d–s63d are found to be numerically more stable com-
pared to Eq.s27d supplemented with Eqs.s20d, s22d, and
s23d. In this new framework, we still need to introduce an
order parameter to capture interfaces. Here, we employ a
function f, referred to henceforth as the index function, in
place of the density, as the order parameter to distinguish the
phases in the flow.

The evolution equation of the distribution function whose
emergent dynamics governs the index function has to be able
to maintain phase segregation and mass conservation. To do
this, we employ Eq.s27d together with Eqs.s20d, s22d, and
s23d by keeping the term involving] jc andm8, while the rest
of the terms may be dropped as they play no role in mass
conservation. In addition, the density is replaced by the index
function in these equations. Hence, the evolution of the dis-
tribution function for the index function is given by

f̄asx + eadt,t + dtd − f̄asx,td

= V̄ fausx,td +
t

t + 1/2
fSfa + Sfa8 gusx,tddt, s64d

where the collision and the source terms are given by
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V̄ fa = −

f̄a −
f

r
fa
eq

t + 1/2
, s65d

Sfa =
sej − ujds− ] jcsfdd

rRT
fa
eq,Msr,ud, s66d

Sfa8 =
f

r
Sa8 =

fa
eq,Msr,0d

r
S−

fuy

y
D . s67d

The hydrodynamic variables such as pressure and fluid ve-
locity can be obtained by taking appropriate kinetic moments
of the distribution functionga—i.e.,

P = o
a

ḡa −
1

2
uj] jcsrd +

1

2
m8RTdt, s68d

rRTui = o
a

ḡaeai +
1

2
sFs,i + Fext,iddt +

1

2
Fi9dt. s69d

This follows from the definition ofḡa given in Eq.s56d and
also includes curvature effects. The index function is ob-

tained from the distribution functionf̄a by taking the zeroth
kinetic moment—i.e.,

f = o
a

f̄a +
1

2

f

r
m8dt. s70d

The termsm8 andFi9 are given in Eqs.s46d ands55d, respec-
tively. The density is obtained from the index function
through linear interpolation—i.e.,

rsfd = rL +
f − fL

fH − fL
srH − rLd, s71d

where rL and rH are the densities of the light and heavy
fluids, respectively, andfL andfH refer to the minimum and
maximum values of the index function, respectively. These
limits of the index function are determined from Maxwell’s
equal area constructionf20g applied to the functioncsfd
+fRT.

Thus, the axisymmetric LBE multiphase flow model with
reduced compressibility effects corresponds to Eqs.
s58d–s71d. The relaxation time for collisions is related to the
viscosity of the fluid using the same expression as derived in
the previous section. If the kinematic viscosity of the light
fluid, nL, is different from that of the heavy fluid,nH, its
value at any point in the fluid is obtained from the index
function through linear interpolation—i.e.,

nsfd = n +
f − fL

fH − fL
sn − nLd. s72d

It may be seen that the model requires the calculation of
spatial gradients in Eqs.s61d ands66d and of the Laplacian in
Eq. s15d. Since maintaining accuracy as well as isotropy is
important for the surface tension terms, they are calculated
by employing a fourth-order finite-difference scheme for the
gradient and a second-order scheme for the Laplacian, given,
respectively, by

]iÃ =
1

36dx
o
a=1

8

f8Ãsx + eaidtd − Ãsx + 2eaidtdgSeai

c
D

+ Osdt
4d s73d

and

¹2Ã ; ]i]iÃ =
1

3dx
2 o

a=1

8

fÃsx + eaidtd − Ãsxdg + Osdx
2d

s74d

for any functionÃ. Notice that these discretizations are both
based on the lattice based stencil, instead of the standard
stencil based on the coordinate directions. In addition, in the
application of this model, the implementation of boundary
conditions plays an important role. In particular, along the
axisymmetric line—i.e.,y=0—specular reflection boundary
conditions are employed for the distribution functions. For

the D2Q9 model shown in the inset of Fig. 1, we setf̄2= f̄4,

f̄5= f̄8, and f̄6= f̄7 and ḡ2= ḡ4, ḡ5= ḡ8, and ḡ6= ḡ7 for the dis-
tribution functions after the streaming step. For macroscopic
conditions, along this line,uy=]ys·d=0, through which the
singular source terms of type 1/ys·d in the model can be
appropriately treated. On the other hand, boundary condi-
tions along the other lines are similar to those for the stan-
dard LBE.

IV. RESULTS AND DISCUSSION

In the rest of this paper, unless otherwise specified, the
results are presented in lattice units; i.e., the velocities are
scaled by the particle velocityc, the distance by the mini-
mum lattice spacingdx, and time byc/dx. All other quantities
are scaled as appropriate combinations of these basic units.
First, the axisymmetric LBE multiphase flow models are ap-
plied to verify the well-known Laplace-Young relation for an
axisymmetric drop. According to this relation,DP=2s /Rd,
whereDP is the difference between the pressure inside and
outside of a drop,s is the surface tension, andRd is the drop
radius. For different choices of the surface tension parameter
k, the surface tension values are obtained from Eq.s9d by the
replacing density in Eqs.s7d and s8d by the index function.
To obtain the normal gradient used in Eq.s9d, a physical
configuration consisting of a liquid and a gas layer is set up.
Once equilibrium is reached, the density gradient may be
computed and hence the surface tension. Having obtained the
relationship between the surface tensions and the parameter
k, axisymmetric drops of four different radiiRd=40, 50, 60,
and 70 are set up in a domain discretized by 2013101 lattice
sites. Periodic boundaries are considered in thex direction
and an open boundary condition is considered along the
boundary that is parallel to the axisymmetric boundary. By
considering three different values ofk, 0.05, 1.0, and 0.15,
the pressure difference across the drops is determined. Figure
2 shows a comparison of the pressure difference across the
interface of the drops computed using the axisymmetric
model developed in Sec. III and that predicted by the
Laplace-Young relation. It is found that the computed results
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are in good agreement with the theoretical values, with a
maximum relative error of about 3%.

Another important test problem is that of an oscillating
axisymmetric drop immersed in a gas. Since current versions
of the LBE simulate a relatively viscous fluid, it is appropri-
ate to compare the oscillation frequency with that of Miller
and Scrivenf32g. In contrast to earlier analytical solutions on
drop oscillations, this work considers viscous dissipation ef-
fects in the boundary layer at the interface. According to
f32g, the frequency for thenth mode of oscillation for a drop
is given by

vn = vn
* −

1

2
avn

*1/2 +
1

4
a2, s75d

wherevn is the angular response frequency andvn
* is Lamb’s

natural resonance frequency expressed asf33g

svn
*d2 =

nsn + 1dsn − 1dsn + 2d
Rd

3fnrg + sn + 1drlg
s. s76d

Rd is the equilibrium radius of the drop,s is the interfacial
surface tension, andrl and rg are the densities of the two
fluids. The parametera is given by

a =
s2n + 1d2smlmgrlrgd1/2

21/2Rdfnrg + sn + 1drlgfsmlrld1/2 + smgrgd1/2g
, s77d

whereml andmg are the dynamic viscosity of the two liquids.
The subscriptsg and l refer to the ambient gas and liquid
phases, respectively. We consider the second mode of oscil-
lation and analytical expressions for the time period are pre-
sented in Eq.s75d.

The initial computational setup consists of a prolate
spheroid of minimumsRmind and maximumsRmaxd radii of 40
and 55, respectively, placed in the center of the domain dis-
cretized by 2013101 lattice sites. We consider the surface
tension parametersk=0.2 and the density of the gas and the
drop to berg=0.1 andrl =0.4, respectively. The kinematic
viscosities of both the gas and the drop are considered to be
the same and given byng=nl =1.6667310−2. Figure 3 shows
the configurations of an oscillating drop at different times
computed using the standard axisymmetric model with these

conditions. The drop changes from a prolate shape att
=2000 to oblate shape att=16 000. Such shape changes con-
tinue until the drop reaches its equilibrium spherical shape.
Figure 4 shows the temporal evolution of the interface loca-
tions of the oscillating drop with the conditions above for
two different surface tension parametersk=0.02 and 0.08. It
is expected that increasing the surface tension will reduce the
time period of oscillations. The computedsTLBEd and analyti-
cal sTanald time periods, whereTanal=2p /v2, whenk=0.02
are 29 483 and 29 448, respectively. Ask is increased to
0.08,TTBE andTanal become 14 388 and 14 313, respectively.
It may be seen that the computed and analytical values agree
well, the difference being less than 1%. Also, the time period
decreases ask is increased, which is consistent with expec-
tations.

Consider next the effect of changing the drop size on the
time period of oscillations. Figure 5 shows the interface lo-
cations of an oscillating drop as a function of time for the
following two initial sizes:Rmin=30, Rmax=45 andRmin=40,
Rmax=55. Reducing the drop size reduces its time period.
The computed time period of the larger drop is equal to
29 483, while that for the smaller drop is 20 118. Compari-
son of the computed time periods with the analytical solution
shows that they agree within 1% for these cases. Next, con-
sider three different kinematic viscosities of the liquid:nl
=1.6667310−2, 3.3333310−2, and 5.0310−2. Figure 6
shows the effect of drop viscosity on the temporal evolution
of the interface locations of the drop. It is found that as the
kinematic viscosity is increased the time period increases
moderately which is consistent with the analytical solution.
The computed time periods at these viscosities are 29 483,
31 030, and 32 925, while the analytical values are 29 448,
30 597, and 31 318, respectively, with a maximum error
within 5.1%.

The third test problem considered here is that of the
breakup of a cylindrical liquid column into drops, a fascinat-
ing problem of long-standing theoretical and practical inter-
est. In a seminal work, Rayleighf34g showed through a lin-
ear stability analysis of an inviscid column of cylindrical
liquid of radius Rc that the column will be unstable if the
axisymmetric wavelength of any disturbanceld is longer

FIG. 2. Pressure difference across axisymmet-
ric drops as a function of radius for different val-
ues of the surface tension parameterk. Compari-
son of computed results using the axisymmetric
LBE model versus theoretical prediction based on
the Laplace-Young relation. Quantities are in lat-
tice units.
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than its circumference; i.e., the wave numberk* =2pRc/ld
should be less than 1. Later, the theoretical analysis was
extended to more realistic conditions by including viscosity.
In the last three decades, several experimental and numerical
investigations have also been performed. To evaluate the axi-
symmetric LBE model, we study the Rayleigh capillary in-
stability for different wave numbers. Initial studies carried
out with k* .1 showed that the liquid does not break up. We
will now present results of cases with break up. Consider a
cylindrical liquid column of radiusRc=45 subject to an axi-
symmetric cosinusoidal wavelengthld=320—i.e.,k* =0.88.
To simulate the dynamics of instability for this wave number,
we consider a domain discretized by 3213151 lattice sites
with rg=0.1, rl =0.4, ng=nl =6.6667310−2, and k=0.1.
Since k* ,1, it is expected that the liquid column would
eventually break up. Figure 7 shows the configurations of the
liquid column at different times. As time progresses, the im-
posed interfacial disturbances on the liquid column grow. At

t=28 000,46 000,52 000, the cross section of the column be-
comes progressively thinner in the center, and by mass con-
servation, the ends becomes larger. Att=60 000, notice that a
bead-type structure is formed at the ends and with a thin
ligament between them. Such a structure has been observed
in experimentsf1g and in other numerical simulationsf35g.
Eventually, the column breaks up, forming a thin ligament in
the middle, which then becomes a satellite droplet.

Let us now increase the wavelength of the disturbance to
ld=600, keeping the physical parameters the same as before.
We consider a domain represented by 6013151 lattice sites.
SinceRc=45, as before, the wave number is 0.47. Figure 8
shows the temporal evolution of the configurations of the
liquid column at this reduced wave number. The axisymmet-
ric disturbance grows with time. Since the wavelength is
longer, it can be noticed that the ligament that is formed
during the Rayleigh instability is also longer. As a result,
after the column breaks up, a larger satellite droplet is

FIG. 3. Configurations of an oscillating drop as a function of time:Rmin=40, Rmax=55, rg=0.1, rl =0.4, andnl =ng=1.6667310−2.
Quantities are in lattice units.
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FIG. 4. Interface location of an oscillating
drop as a function of time for two values of the
surface tension parameterk: Rmin=40, Rmax=55,
rg=0.1, rl =0.4, and nl =ng=1.6667310−2.
Quantities are in lattice units.

FIG. 5. Interface location of an oscillating
drop as a function of time for two drop sizes:
rg=0.1, rl =0.4, nl =ng=1.6667310−2, and k
=0.02. Quantities are in lattice units.

FIG. 6. Interface location of an oscillating
drop as a function of time for different kinematic
viscosities nl: Rmin=40, Rmax=55, rg=0.1, rl

=0.4, andk=0.02. Quantities are in lattice units.
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formed. To express the drop size distribution with wave
numbers more quantitatively, we plot the nondimensional
size of the main and satellite drops,r* =R/Rc, as a function
of wave number,k* in Fig. 9. It may be noted that Rayleigh’s
original analysis predicts only the onset of breakup and not
the formation of satellite droplets. To predict analytically sat-
ellite droplet formation, it has been shown that at least a
third-order perturbation analysis of the Navier-Stokes equa-
tion sNSEd is neededf36g. Computations based on direct
solutions of the NSE also predict the formation of the satel-
lite droplets.

To evaluate the drop size distribution computed using the
axisymmetric LBE model, we consider the experimental data
of Rutland and Jamesonf37g, the experimental data and ana-
lytical solution based on a third-order perturbation analysis
of the NSE by Lafrancef36g, a boundary integral solution of
the NSE by Mansour and Lundgrenf38g and a finite-element
solution of the NSE by Ashgriz and Mashayekf35g. It can be
seen in the figure that as long as the wave number is less than
1, as expected there will be a satellite droplet formation. As
the wave number is reduced, the sizes of both the main drop
and satellite droplet increase. The rate of increase of the size

FIG. 7. Configurations of a cylindrical liquid column at different times undergoing Rayleigh breakup and satellite droplet formation:
k* =0.88,rg=0.1, rl =0.4, andnl =ng=6.6667310−2. Quantities are in lattice units.
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FIG. 8. Configurations of a cylindrical liquid column at different times undergoing Rayleigh breakup and satellite droplet formation:
k* =0.47,rg=0.1, rl =0.4, andnl =ng=6.6667310−2. Quantities are in lattice units.

FIG. 9. Drop sizes resulting from Rayleigh breakup of liquid cylindrical column as a function of wave numberk* . Quantities are
dimensionless.
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of the satellite droplet is greater than that of the main drop.
Notice that there is considerable scatter in the available data
in the figure. The computed results from the axisymmetric
LBE model are presented for wave numbers greater than or
equal to 0.47. Ignoring the two experimental data points of
Lafrancef36g for the satellite drop sizes that deviate consid-
erably from the others, we find that the axisymmetric model
is able to reproduce the drop size distribution quantitatively
within 12%.

The axisymmetric model has been employed to study
head-on collisions of drops of radiiR1 and R2 approaching
each other with a relative velocityU. The dynamics and
outcome of colliding drops are characterized mainly by the
Weber numberNWe defined byNWe=rlsR1+R2dU2/s f39g.
Additional parameters that may have an influence are the
Ohnesorge numberNOh defined byNOh=16ml /ÎrlR1s and
ratios of liquid and gas densitiessrd and dynamic viscosities
sld. According to experimentsf39g, it is expected that lower
NWe collisions lead to coalescence while higherNWe to sepa-
ration by reflexive action. Figures 10 and 11 present drop
configurations atNWe=20 and 100, respectively. Notice that
at NWe=20, the drops coalesce, while atNWe=100, they

eventually separate with the formation of a satellite droplet,
which are consistent with experimental observations. Also
notice that for the latter case, the temporarily coalesced drop
undergoes various stages of deformation which are consis-
tent with a recent theoretical analysisf40g. Additional details
of these and other studies of drop collisions are given in Ref.
f41g.

V. SUMMARY

In this paper, a LB model for axisymmetric multiphase
flows is developed. The axisymmetric model is developed by
adding source terms to the standard Cartesian BGK LBE.
The source terms, which are temporally and spatially depen-
dent, represent the axisymmetric contributions of the order
parameter, which distinguish the different phases, as well as
inertial, viscous, and surface tension forces. Consistency of
the model in achieving the desired axisymmetric flow multi-
phase behavior is established through the Chapman-Enskog
multiscale analysis. The analysis shows that the axisymmet-
ric macroscopic conservation equations are recovered in the
continuum limit. An axisymmetric model with reduced com-

FIG. 10. Colliding drops at different timesT: NWe=20,NOh=0.589,r =4, andl=1. Time is normalized by the relative velocity between
the drops and their diameter. Axes are in lattice units.
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pressibility effects is then developed to improve its compu-
tational stability. In this version, a transformation is intro-
duced to the distribution function in the LBE such that it
reduces the compressibility effects. Comparisons of com-
puted axisymmetric equilibrium drop formation and oscilla-
tions, Rayleigh capillary instability, breakup and formation
of satellite drops liquid cylindrical liquid columns, and the
outcomes of head-on drop collisions with available data
show satisfactory agreement. The maximum error for the fre-

quency of drop oscillations is less than 5.1% and that for
drop sizes as a result of Rayleigh breakup is 12%.
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